APPLICATION OF MOLYBDENUM-BASED BIOSENSORS IN THE DIAGNOSIS OF DISEASES

DOI 10.53511/PHARMKAZ.2023.71.77.007

M.B. Abu1, A.А. Imamussenova1, L.K. Kudreyeva1, N.Zh. Zhumasheva1, A.M. Sarsenbayeva, K.M. Kedelbayeva2
1al-Farabi Kazakh National University, Almaty city, Republic of Kazakhstan
2Asfendiyarov Kazakh National Medical University, Almaty city, Republic of Kazakhstan

APPLICATION OF MOLYBDENUM-BASED BIOSENSORS
IN THE DIAGNOSIS OF DISEASES

Resume: Molybdenum transition metal compounds and nanoparticles have attracted much attention due to their unique physicochemical properties, multifunctional properties, and increased technological applications. This literature review reviewed the work of molybdenum compound biosensors based on research conducted over the past five years. Biosensors are analytical devices that combine a biological component and a physico-chemical component to produce a measured signal. In the course of the literature review, it was found that molybdenum-based biosensors were used to determine troponin-I, chronic myeloid leukemia, cyclic citrulline peptide, acetaminophen, Tau-381, dopamine, and epithelial cell adhesion molecules. It was found
that these sensitive biomarkers are very effective for diagnosis, predicting the rate of development of the disease and rehabilitation, evaluating pharmacological treatment — one of the main obstacles in the study of diseases such as acute myocardial infarction, arthritis, cancer and Alzheimer’s disease. As a result of the considered scientific works, such basic parameters of molybdenum-based biosensors as the detection limit relative to synthesis methods, electrochemical analysis methods, specificity, and the analysis under study were compared in tabular form. In general, the main purpose of this review is to conduct an analysis and a comprehensive review of the research work of molybdenum and its compounds used in the creation of a biosensor.
Keywords: biosensor; biomarker; troponin-I; molybdenum disulfide; molybdenum oxide; nanocomposite

REFERENCES

1 Saji V.S., Lee C.W. Molybdenum, molybdenum oxides, and their electrochemistry // ChemSusChem. 2012. Vol. 5, № 7. P. 1146–1161. PMID: 22693154.
DOI: 10.1002 / cssc.201100660
2 Samdani K.J., Joh D.W., Lee K.T. Molybdenum carbide nanoparticle-decorated 3D nitrogen-doped carbon flowers as an efficient electrode for highperformance, all-solid-state symmetric supercapacitors // J. Alloys Compd. Elsevier B.V., 2018. Vol. 748. P. 134–144. DOI: 10.1016 / J.JALLCOM.2018.03.139
3 Bauer D. et al. Mixed molybdenum and vanadium oxide nanoparticles with excellent high-power performance as Li-ion battery negative electrodes //
Electrochim. Acta. Elsevier Ltd, 2019. Vol. 322. P. 134695. DOI: 10.1016/j. electacta.2019.134695
4 Pathan H.M. et al. Electrosynthesis of molybdenum oxide thin films onto stainless substrates // Electrochem. commun. 2006. Vol. 8, № 2. P. 273–278. DOI:
10.1016 / j.elecom.2005.11.022
5 Qin X. et al. Molybdenum sulfide/citric acid composite membrane-coated long period fiber grating sensor for measuring trace hydrogen sulfide gas // Sensors
Actuators, B Chem. Elsevier, 2018. Vol. 272, № May. P. 60–68. DOI: 10.1016/j.snb.2018.05.152
6 Yang L.C. et al. MoO2 synthesized by reduction of MoO3 with ethanol vapor as an anode material with good rate capability for the lithium ion battery // J.
Power Sources. 2008. Vol. 179, № 1. P. 357–360. DOI: 10.1016/j.jpowsour.2007.12.099
7 Upadhyay K.K. et al. Electrodeposited MoO x films as negative electrode materials for redox supercapacitors // Electrochim. Acta. Elsevier Ltd, 2017. Vol.
225. P. 19–28. DOI: 10.1016/j.electacta.2016.12.106
8 Dhas N. et al. Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: Current advancement and future
breakthroughs // J. Control. Release. Elsevier B.V., 2021. Vol. 330, № October 2020. P. 257–283. DOI: 10.1016/j.jconrel.2020.12.015
9 Zhu X. et al. Recent advances in synthesis and biosensors of two-dimensional MoS2 // Nanotechnology. IOP Publishing, 2019. Vol. 30, № 50. DOI: 10.1088
/ 1361-6528 / ab42fe
10 Naylor C.H. et al. Scalable Production of Molybdenum Disulfide Based Biosensors // ACS Nano. 2016. Vol. 10, № 6. P. 6173–6179. DOI: 10.1021/ acsnano.
6b02137
11 Sawant S.N. From Biopolymer Composites // Biopolymer Composites in Electronics. Elsevier Inc., 2017. 353–383 p.
12 Sobańska Z. et al. Biological effects of molybdenum compounds in nanosized forms under in vitro and in vivo conditions // Int. J. Occup. Med. Environ.
Health. 2020. Vol. 33, № 1. P. 1–19. DOI: 10.13075 / ijomeh.1896.01411
13 Dalila R N. et al. Current and future envision on developing biosensors aided by 2D molybdenum disulfide (MoS 2 ) productions // Biosens. Bioelectron.
Elsevier B.V., 2019. Vol. 132, № March. P. 248–264. DOI: 10.1016/j.bios.2019.03.005
14 Guo Y., Li J. MoS2 quantum dots: synthesis, properties and biological applications // Mater. Sci. Eng. C. Elsevier B.V, 2020. Vol. 109. P. 110511. DOI:
10.1016/j.msec.2019.110511
15 Kasinathan K. et al. Cyclodextrin functionalized multi-layered MoS2 nanosheets and its biocidal activity against pathogenic bacteria and MCF-7 breast cancer
cells: Synthesis, characterization and in-vitro biomedical evaluation // J. Mol. Liq. Elsevier B.V, 2021. Vol. 323. P. 114631. DOI: 10.1016/j.molliq.2020.114631
16 Pourali A. et al. Voltammetric biosensors for analytical detection of cardiac troponin biomarkers in acute myocardial infarction // TrAC — Trends Anal. Chem.
Elsevier Ltd, 2021. Vol. 134. P. 116123. DOI: 10.1016/j.trac.2020.116123
17 Sze J. et al. Cardiac Troponin and its Relationship to Cardiovascular Outcomes in Community Populations — A Systematic Review and Meta-analysis //
Hear. Lung Circ. Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand
(CSANZ), 2016. Vol. 25, № 3. P. 217–228. DOI: 10.1016/j.hlc.2015.09.001
18 Qiao X. et al. Novel electrochemical sensing platform for ultrasensitive detection of cardiac troponin I based on aptamer-MoS2 nanoconjugates // Biosens.
Bioelectron. Elsevier B.V., 2018. Vol. 113, № May. P. 142–147. DOI: 10.1016/j.bios.2018.05.003
19 Vasudevan M. et al. Cellulose acetate-MoS2 nanopetal hybrid: A highly sensitive and selective electrochemical aptasensor of Troponin I for the early
diagnosis of Acute Myocardial Infarction // J. Taiwan Inst. Chem. Eng. Elsevier B.V., 2021. Vol. 000. P. 1–9. DOI: 10.1016/j.jtice.2021.01.016
20 Zhao H. et al. Electrochemical immunosensor based on Au/Co-BDC/MoS2 and DPCN/MoS2 for the detection of cardiac troponin I // Biosens. Bioelectron.
2021. Vol. 175, № October 2020. DOI: 10.1016/j.bios.2020.112883
21 Soni A. et al. Electrochemical genosensor based on template assisted synthesized polyaniline nanotubes for chronic myelogenous leukemia detection //
Talanta. Elsevier B.V., 2018. Vol. 187, № May. P. 379–389. DOI: 10.1016/j.talanta.2018.05.038
22 Fagotto F., Aslemarz A. EpCAM cellular functions in adhesion and migration, and potential impact on invasion: A critical review // Biochim. Biophys. Acta —
Rev. Cancer. Elsevier B.V, 2020. Vol. 1874, № 2. P. 188436. DOI: 10.1016/j.bbcan.2020.188436
23 Jalil O., Pandey C.M., Kumar D. Highly sensitive electrochemical detection of cancer biomarker based on anti-EpCAM conjugated molybdenum disulfide
grafted reduced graphene oxide nanohybrid // Bioelectrochemistry. Elsevier B.V., 2021. Vol. 138. P. 107733. DOI: 10.1016/j.bioelechem.2020.107733
24 Soni A. et al. Highly efficient Polyaniline-MoS 2 hybrid nanostructures based biosensor for cancer biomarker detection // Anal. Chim. Acta. Elsevier Ltd,2019. Vol. 1055. P. 26–35. DOI: 10.1016/j.aca.2018.12.033
25 Atallah E. et al. CML-246: Systematic Literature Review of the Efficacy of Available Interventions for Patients with Chronic-Phase (CP) Chronic Myeloid
Leukemia (CML) Who Have Previously Been Treated with ≥2 Lines of Tyrosine Kinase Inhibitors (TKIs) // Clin. Lymphoma Myeloma Leuk. Elsevier Inc., 2020.
Vol. 20, № September. P. S238–S239. DOI: 10.1016/S2152-2650(20)30823-5
26 Urabe A. Chronic myelogenous leukemia // Nippon rinsho. Japanese J. Clin. Med. 2006. Vol. 64, № 7. P. 1286–1290.
27 Panneer Selvam S., Chinnadayyala S.R., Cho S. Electrochemical nanobiosensor for early detection of rheumatoid arthritis biomarker: Anti- cyclic citrullinated
peptide antibodies based on polyaniline (PANI)/MoS2-modified screen-printed electrode with PANI-Au nanomatrix-based signal amplification // Sensors
Actuators B Chem. Elsevier B.V., 2021. № January. P. 129570. DOI: 10.1016/j.snb.2021.129570
28 Lu J. et al. Molybdenum disulfide nanosheets: From exfoliation preparation to biosensing and cancer therapy applications // Colloids Surfaces B Biointerfaces.
2020. Vol. 194, № March. DOI: 10.1016/j.colsurfb.2020.111162
29 Su C. et al. A highly sensitive sensor based on a computer-designed magnetic molecularly imprinted membrane for the determination of acetaminophen //
Biosens. Bioelectron. Elsevier B.V., 2020. Vol. 148. P. 111819. DOI: 10.1016/j.bios.2019.111819
30 Montaseri H., Forbes P.B.C. Analytical techniques for the determination of acetaminophen: A review // TrAC — Trends Anal. Chem. Elsevier B.V., 2018. Vol.
108. P. 122–134. DOI: 10.1016/j.trac.2018.08.023
31 Liu C. et al. Fabrication of a novel nanocomposite electrode with ZnO-MoO3 and biochar derived from mushroom biomaterials for the detection of
acetaminophen in the presence of DA // Microchem. J. Elsevier B.V., 2021. Vol. 161, № September 2020. P. 105719. DOI: 10.1016/j.microc.2020.105719
32 Roy N., Yasmin S., Jeon S. Effective electrochemical detection of dopamine with highly active molybdenum oxide nanoparticles decorated on 2, 6
diaminopyridine/reduced graphene oxide // Microchem. J. Elsevier, 2020. Vol. 153, № December. P. 104501. DOI: 10.1016/j.microc.2019.104501
33 Singh G., Kushwaha A., Sharma M. Electrochemistry of rGO-Cu3H2Mo2O10 cuboidal nanostructures: An effective detection of neurotransmitter dopamine
in blood serum sample // J. Electroanal. Chem. Elsevier B.V., 2021. Vol. 880. P. 114889. DOI: 10.1016/j.jelechem.2020.114889
34 Mohamed Azharudeen A. et al. Selective enhancement of non-enzymatic glucose sensor by used PVP modified on α-MoO3 nanomaterials // Microchem.
J. Elsevier, 2020. Vol. 157, № May. P. 105006. DOI: 10.1016/j.microc.2020.105006
35 Antoniazzi C. et al. Molybdenum trioxide incorporated in a carbon paste as a sensitive device for bisphenol A monitoring // Microchem. J. 2020. Vol. 159,
№ September. DOI: 10.1016/j.microc.2020.105528
36 Cong Y. et al. Fabrication of electrochemically-modified BiVO4-MoS2-Co3O4composite film for bisphenol A degradation // J. Environ. Sci. (China). 2021.
Vol. 102. P. 341–351. DOI: 10.1016/j.jes.2020.09.027
37 Hun X., Kong X. An enzyme linked aptamer photoelectrochemical biosensor for Tau-381 protein using AuNPs/MoSe2 as sensing material // J. Pharm.
Biomed. Anal. Elsevier B.V., 2021. Vol. 192. P. 113666. DOI: 10.1016/j.jpba.2020.113666
38 Lei P., Ayton S., Bush A.I. The essential elements of Alzheimer’s disease // J. Biol. Chem. Elsevier B.V, 2021. Vol. 296. P. 100105. DOI: 10.1074/jbc.
REV120.008207
39 Guo T. et al. Longitudinal Cognitive and Biomarker Measurements Support a Unidirectional Pathway in Alzheimer’s Disease Pathophysiology // Biol.
Psychiatry. Elsevier Inc, 2020. № 12. P. 1–9. DOI: 10.1016/j.biopsych.2020.06.029
40 Chauhan D. et al. Nanostructured transition metal chalcogenide embedded on reduced graphene oxide based highly efficient biosensor for cardiovascular
disease detection // Microchem. J. Elsevier, 2020. Vol. 155, № January. P. 104697. DOI: 10.1016/j.microc.2020.104697

Скачать: APPLICATION OF MOLYBDENUM-BASED BIOSENSORS IN THE DIAGNOSIS OF DISEASES
Скачано: 566, размер: 439.5 KB, дата: 2023

количество просмотров / 👁 986

Оставить ответ

Ваш e-mail не будет опубликован. Обязательные поля помечены *