Received: 05.07.2023 /Accepted: 04.09.2023/ Published online: 29.12.2023
УДК 616.34-008-07-084
DOI 10.53511/PHARMKAZ.2024.25.65.015
N.M. SAMOILOVA-BEDYCH1, E.M. LARYUSHINA1, A.B. MARCHENKO1, A.K. SEISENBEKOVA1
1 NCJSC «Karaganda Medical University», Karaganda, Kazakhstan
THE ROLE OF THE INTESTINAL MICROBIOTA METABOLITE TMAO
IN THE PATHOGENESIS OF VARIOUS DISEASES
Resume: links in the pathogenesis of various diseases are a potential therapeutic target of pathogenetic
treatment. Modern trends and discoveries of metabolomics open a “window” for studying pathogenesis from
the point of view of the interaction of inter-organ axes associated with the intestinal microbiota. Every second
the intestinal microbiota through chemical reactions produces a huge number of substances, compounds,
enzymes which called «metabolites». Currently, one of the widely studied metabolites is trimethylaminetrimethylamine-N-oxide (TMAO). TMAO is a substance formed by the oxidation of trimethylamine, a product
of the breakdown of dietary free choline, phosphatidylcholine, and carnitine metabolism through the intestinal
microbiota. The presented review examines the effect of TMAO on the mechanisms of occurrence and
progression of diseases of the cardiovascular, gastrointestinal, endocrine, and nervous systems. Awareness of
its role in the pathogenesis of chronic non-communicable diseases provides new opportunities in approaches
to the treatment of patients.
Keywords: trimethylamine-N-oxide, microbiota, metabolite, pathogenesis, inflammatory bowel diseases,
metabolic-associated liver disease, atherosclerosis, chronic kidney disease, Alzheimer’s disease.
REFERENCES
1 Linjie Liao, Junli Huang, Jinghui Zheng, Xiaocong Ma, Longjian Huang, Wenhua Xu, Gut microbiota in Chinese and Japanese patients with cardiovascular
diseases: a systematic review and meta-analysis. Annals of Saudi Medicine. 2023; 43(2):105-114.
2 Jing Lu, Xiao Jin, Shengjie Yang, Yujuan Li, Xinyue Wang, Min Wu, Immune mechanism of gut microbiota and its metabolites in the occurrence and
development of cardiovascular diseases. Frontiers in Microbiology. 2022; (13):1034537.
3 Kiera Murphy, Aoife N O’Donovan, Noel M Caplice, R Paul Ross , Catherine Stanton, Exploring the Gut Microbiota and Cardiovascular Disease. Metabolites.
2021; 11(8):493.
4 Vineet Mehta, Priyanka Nagu, Baskaran Stephen Inbaraj, Minaxi Sharma, Arun Parashar, Kandi Sridhar, Epigenetics and Gut Microbiota Crosstalk: A potential
Factor in Pathogenesis of Cardiovascular Disorders. Bioengineering (Basel). 2022; 9(12):798.
5 Susanna Longo, Stefano Rizza, Massimo Federici, Microbiota-gut-brain axis: relationships among the vagus nerve, gut microbiota, obesity, and diabetes.
Acta Diabetol. 2023; 60(8):1007-1017.
6 Li Qin, Junru Wu, Xuejing Sun, Xuewei Huang, Wei Huang, Chunyan Weng, Jingjing Cai, The regulatory role of metabolic organ-secreted factors in the
nonalcoholic fatty liver disease and cardiovascular disease. Front Cardiovasc Med. 2023; 10:1119005.
7 Xiang Zhang, Suki Ha, Harry Cheuk-Hay Lau, Jun Yu, Excess body weight: Novel insights into its roles in obesity comorbidities. Semin Cancer Biol. 2023;
92:16-27.
8 Raghad Khalid Al-Ishaq, Samson Mathews Samuel, Dietrich Büsselberg, The Influence of Gut Microbial Species on Diabetes Mellitus. International Journal
of Molecular Sciences. 2023; 24(9):8118.
9 Faezeh Golpour, Mehrsa Abbasi-Alaei, Fatemeh Babaei, Mohammadreza Mirzababaei, Siavash Parvardeh, Ghazaleh Mohammadi, Marjan Nassiri-Asl, Short
chain fatty acids, a possible treatment option for autoimmune diseases. Biomedicine & Pharmacotherapy. 2023;163:114763.
10 Albert J Czaja, Incorporating the Molecular Mimicry of Environmental Antigens into the Causality of Autoimmune Hepatitis. Digestive Diseases and Sciences.
2023; 68:2824–2842.
11 Alper Evrensel, Microbiome-Induced Autoimmunity and Novel Therapeutic Intervention. Neuroinflammation, Gut-Brain Axis and Immunity in Neuropsychiatric
Disorders. 2023;1411:71-90.
12 Bilal Ahmad Paray, Mohammed Fahad Albeshr, Arif Tasleem, Irfan A Rather, Leaky Gut and Autoimmunity: An Intricate Balance in Individuals Health and
the Diseased State. International Journal of Molecular Sciences. 2020; 21(24):9770.
13 Yang Jiang, Yajie Dai, Zhenquan Liu, Yan Liao, Shuyong Sun, Xianghe Kong, Jingjing Hu, Yibo Tang, The role of IL-23/IL-17 axis in ischemic stroke from
the perspective of gut-brain axis. Neuropharmacology. 2023; 231:109505.
14 Ullrich Wüllner, Per Borghammer, Chi-un Choe, Ilona Csoti, Björn Falkenburger, Thomas Gasser, Paul Lingor & Peter Riederer, The heterogeneity of
Parkinson’s disease. Journal of Neural Transmission (Vienna). 2023;11:1–12.
15 Bhupinder Kapoor, Monica Gulati, Reena Gupta, Rajeev K Singla, Microbiota dysbiosis and myasthenia gravis: Do all roads lead to Rome? Autoimmunity
Reviews. 2023;22(5):103313.
16 Robert A. Koeth, Zeneng Wang, Bruce S. Levison, Jennifer A. Buffa, Elin Org, Brendan T. Sheehy, Earl B. Britt, Xiaoming Fu, Yuping Wu, Lin Li, Jonathan
D. Smith, Joseph A. DiDonato, Jun Chen, Hongzhe Li, Gary D. Wu, James D. Lewis, Manya Warrier, J. Mark Brown, Ronald M. Krauss, W. H. Wilson Tang,
Frederic D. Bushman, Aldons J. Lusis, Stanley L. Hazen, Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine volume. 2013;19(5):576-85.
17 Zeneng Wang, Yongzhong Zhao, Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell. 2018;9(5):416-431.
18 Gints Kalnins, Janis Kuka, Solveiga Grinberga, Marina Makrecka-Kuka, Edgars Liepinsh, Maija Dambrova, Kaspars Tars, Structure and Function of CutC
Choline Lyase from Human Microbiota Bacterium Klebsiella pneumoniae. J Biol Chem. 2015;290(35):21732-40.
19 Alina Mihaela Leustea, Manuela Ciocoiu, Anca Sava, Claudia Florida Costea, Mariana Floria , Claudia Cristina Tarniceriu, Daniela Maria Tanase, Implications
of the Intestinal Microbiota in Diagnosing the Progression of Diabetes and the Presence of Cardiovascular Complications. J Diabetes Res. 2018; 2018:5205126.
20 Bennett BJ, de Aguiar Vallim TQ, Wang Z, Shih DM, Meng Y, Gregory J, Allayee H, Lee R, Graham M, Crooke R, Edwards PA, Hazen SL, Lusis AJ.
Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013;17(1):49-60.
21 Bell JD, Lee JA, Lee HA, Sadler PJ, Wilkie DR, Woodham RH. Nuclear magnetic resonance studies of blood plasma and urine from subjects with chronic
renal failure: identification of trimethylamine-N-oxide. Biochim Biophys Acta. 1991;1096(2):101-7.
22 DE LA HUERGA J, POPPER H, STEIGMANN F. Urinary excretion of choline and trimethylamines after intravenous administration of choline in liver
diseases. J Lab Clin Med. 1951;38(6):904-10.
23 Ascher S, Reinhardt C. The gut microbiota: an emerging risk factor for cardiovascular and cerebrovascular disease. Eur J Immunol. 2018;48:564–575
24 Al Samarraie A, Pichette M, Rousseau G., Role of the Gut Microbiome in the Development of Atherosclerotic Cardiovascular Disease. International Journal
of Molecular Sciences. 2023; 24(6):5420
25 Sitkin SI, Tkachenko EI, Vakhitov TY., Metabolic dysbiosis of the gut microbiota and its biomarkers. Eksp Klin Gastroenterol. 2016;12(12):6-29.
26 Janeiro MH, Ramírez MJ, Milagro FI, Martínez JA, Solas M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New
Therapeutic Target. Nutrients. 2018;10(10):1398.
27 Khatri V, Kalyanasundaram R. Therapeutic implications of inflammasome in inflammatory bowel disease. FASEB J. 2021;35(5):e21439/
28 Xu Q, Zhou X, Strober W, Mao L. Inflammasome Regulation: Therapeutic Potential for Inflammatory Bowel Disease. Molecules. 2021;26(6):1725.
29 Xu Q, Sun W, Zhang J, Mei Y, Bao J, Hou S, Zhou X, Mao L. Inflammasome-targeting natural compounds in inflammatory bowel disease: Mechanisms and
therapeutic potential. Front Immunol. 2022;13:963291.
30 Chaochi Yue, Xiangdong Yang, Jun Li, Xiaochao Chen, Xiangdong Zhao, Ye Chen, Yong Wen, Trimethylamine N-oxide prime NLRP3 inflammasome via
inhibiting ATG16L1-induced autophagy in colonic epithelial cells. Biochemical and Biophysical Research Communications. 2017; 490 (2):541-551.
31 Chen K, Zheng X, Feng M, Li D, Zhang H. Gut Microbiota-Dependent Metabolite Trimethylamine N-Oxide Contributes to Cardiac Dysfunction in Western
Diet-Induced Obese Mice. Front Physiol. 2017;8:139.
32 Sabine Rohrmann, Jakob Linseisen, Martina Allenspach, Arnold von Eckardstein, Daniel Müller, Plasma Concentrations of Trimethylamine-N-oxide Are
Directly Associated with Dairy Food Consumption and Low-Grade Inflammation in a German Adult Population. The Journal of Nutrition. 2016; 146(2): 283-289.
33 Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH,
DiDonato JA, Lusis AJ, Hazen SL, Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57-63.
34 Tang, W. W., Wang, Z., Levison, B. S., Koeth, R. A., Britt, E. B., Fu, X & Hazen, S. L, Intestinal microbial metabolism of phosphatidylcholine and cardiovascular
risk. New England Journal of Medicine. 2013;368(17):1575-1584.
35 Wilson A, Teft WA, Morse BL, Choi YH, Woolsey S, DeGorter MK, Hegele RA, Tirona RG, Kim RB. Trimethylamine-N-oxide: A Novel Biomarker for the
Identification of Inflammatory Bowel Disease. Dig Dis Sci. 2015;60(12):3620-30 2016 Jan;61(1):325.
36 Seref Kul, Zuhal Caliskan, Tolga Sinan Guvenc, Fatma Betul Celik, Abdurrahman Sarmis, Adem Atici, Oguz Konal, Mesut Akıl, Ahmet Selin Cumen,
Nermin Mutlu Bilgic, Yusuf Yilmaz, Mustafa Caliskan, Gut microbiota-derived metabolite trimethylamine N-oxide and biomarkers of inflammation are linked to
endothelial and coronary microvascular function in patients with inflammatory bowel disease. Microvasc Res. 2023;146:104458.
37 Ogresta D, Mrzljak A, Cigrovski Berkovic M, Bilic-Curcic I, Stojsavljevic-Shapeski S, Virovic-Jukic L. Coagulation and Endothelial Dysfunction Associated
with NAFLD: Current Status and Therapeutic Implications. J Clin Transl Hepatol. 2022;10(2):339-355.
38 Kasper P, Martin A, Lang S, Kütting F, Goeser T, Demir M, Steffen HM. NAFLD and cardiovascular diseases: a clinical review. Clinical research in cardiology.
2021;110:921-937.
39 Daoyuan Ren, Yafei Liu, Yan Zhao, Xingbin Yang, Hepatotoxicity and endothelial dysfunction induced by high choline diet and the protective effects of
phloretin in mice. Food and Chemical Toxicology. 2016; 94:203-12.
40 Hoyles L, Fernández-Real J-M, Federici M, et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med.
2018; 24: 1070–1080.
41 Boursier J, Mueller O, Barret M, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of
the gut microbiota. Hepatology. 2016; 63:764–775.
42 Chen, Z., Tian, R., She, Z., Cai, J., & Li, H., Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radical Biology and
Medicine. 2020; 152:116-141.
43 Barrea L, Annunziata G, Muscogiuri G, Di Somma C, Laudisio D, Maisto M, de Alteriis G, Tenore GC, Colao A, Savastano S. Trimethylamine-N-oxide
(TMAO) as Novel Potential Biomarker of Early Predictors of Metabolic Syndrome. Nutrients. 2018; 10(12):1971.
44 Theofilis P, Vordoni A, Kalaitzidis RG. Trimethylamine N-Oxide Levels in Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis.
Metabolites. 2022; 12(12):1243.
45 Tan X, Liu Y, Long J, Chen S, Liao G, Wu S, Li C, Wang L, Ling W, Zhu H. Trimethylamine N-Oxide Aggravates Liver Steatosis through Modulation of Bile
Acid Metabolism and Inhibition of Farnesoid X Receptor Signaling in Nonalcoholic Fatty Liver Disease. Mol Nutr Food Res. 2019;63(17):e1900257.
46 Haraszthy, V.I.; Zambon, J.J.; Trevisan, M.; Zeid, M.; Genco, R.J. Identification of periodontal pathogens in atheromatous plaques. J. Periodontol. 2000;
71:1554–1560
47 Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH,
DiDonato JA, Lusis AJ, Hazen SL. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57-63.
48 Al Samarraie A, Pichette M, Rousseau G. Role of the Gut Microbiome in the Development of Atherosclerotic Cardiovascular Disease. International Journal
of Molecular Sciences. 2023; 24(6):5420
49 Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, DiDonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier
M, Brown JM, Krauss RM, Tang WH, Bushman FD, Lusis AJ, Hazen SL. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes
atherosclerosis. Nat Med. 2013;19(5):576-85.
50 Tang WH, Wang Z, Fan Y, Levison B, Hazen JE, Donahue LM, Wu Y, Hazen SL. Prognostic value of elevated levels of intestinal microbe-generated
metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol. 2014;64(18):1908-14.
51 Cui X, Ye L, Li J, Jin L, Wang W, Li S, Bao M, Wu S, Li L, Geng B, Zhou X, Zhang J, Cai J., Metagenomic and metabolomic analyses unveil dysbiosis of
gut microbiota in chronic heart failure patients. Sci Rep. 2018; 8(1):635.
52 Liu G, Cheng J, Zhang T, et al. Inhibition of microbiota-dependent trimethylamine N-oxide production ameliorates high salt diet-induced sympathetic
excitation and hypertension in rats by attenuating central neuroinflammation and oxidative stress. Front Pharmacol. 2022; 13:856914–857011
53 Gabriele Giacomo Schiattarella, Anna Sannino, Evelina Toscano, Giuseppe Giugliano, Giuseppe Gargiulo, Anna Franzone, Bruno Trimarco, Giovanni
Esposito, Cinzia Perrino, Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response
meta-analysis. European Heart Journal. 2017; 38 (39): 2948–2956.
54 Marchenko Alexandr Borisovich, Ivasenko Svetlana Aleksandrovna, Laryushina Yelena Mikhailovna, Turgunova Lyudmila Gennadievna, Turmukhambetova
Anar Akylbekovna, Dan Moraru, Antonella Chesca, Relationship between Trimethylamine n-oxide and total cardiovascular risk in the population of Central
Kazakhstan. Acta Medica Mediterranea. 2018, 34: 59.
55 Guinan Xie, An Yan, Peng Lin, Yi Wang, Liping Guo. Trimethylamine N-oxide—a marker for atherosclerotic vascular disease. Rev. Cardiovasc. Med. 2021;
22(3): 787–797.
56 Zhang H, Jing L, Zhai C, Xiang Q, Tian H, Hu H., Intestinal Flora Metabolite Trimethylamine Oxide Is Inextricably Linked to Coronary Heart Disease. J
Cardiovasc Pharmacol. 2023 1;81(3):175-182.
57 Dambrova M, Latkovskis G, Kuka J, Strele I, Konrade I, Grinberga S, Hartmane D, Pugovics O, Erglis A, Liepinsh E., Diabetes is Associated with Higher
Trimethylamine N-oxide Plasma Levels. Exp Clin Endocrinol Diabetes. 2016;124(4):251-6.
58 Sanchez-Alcoholado, L.; Castellano-Castillo, D.; Jordán-Martínez, L.; Moreno-Indias, I.; Cardila-Cruz, P.; Elena, D.; Muñoz-Garcia, A.J.; Queipo-Ortuño,
M.I.; Navarro, M.F.J. Role of gut microbiota on cardio-metabolic parameters and immunity in coronary artery disease patients with and without type-2 diabetes
mellitus. Front. Microbiol. 2017; 8:1936.
59 Zhuang, R.; Ge, X.; Han, L.; Yu, P.; Gong, X.; Meng, Q.; Zhang, Y.; Fan, H.; Zheng, L.; Liu, Z.; et al. Gut microbe–generated metabolite trimethylamine
N-oxide and the risk of diabetes: A systematic review and dose-response meta-analysis. Obes. Rev. 2019; 20:883–894.
60 Lever M, George PM, Slow S, Bellamy D, Young JM, Ho M, McEntyre CJ, Elmslie JL, Atkinson W, Molyneux SL, Troughton RW, Frampton CM, Richards AM,
Chambers ST. Betaine and Trimethylamine-N-Oxide as Predictors of Cardiovascular Outcomes Show Different Patterns in Diabetes Mellitus: An Observational
Study. PLoS One. 2014;9(12):e114969.
61 Kalagi NA, Thota RN, Stojanovski E, Alburikan KA, Garg ML., Association between Plasma Trimethylamine N-Oxide Levels and Type 2 Diabetes: A Case
Control Study. Nutrients. 2022;14(10):2093.
62 Burcelin, R.; Serino, M.; Chabo, C.; Blasco-Baque, V.; Amar, J., Gut microbiota and diabetes: From pathogenesis to therapeutic perspective. Acta Diabetol.
2011; 48:257–273.
63 Yang M, Zhang R, Zhuang C, Wu Y, Yang Q, Yu Z, Liu J, Zha B, Gong Q, Yang B, Zeng M, Yan C., Serum Trimethylamine N-oxide and the Diversity of the
Intestinal Microbial Flora in Type 2 Diabetes Complicated by Diabetic Kidney Disease. Clin Lab. 2022;68(5).
64 Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, Gu X, Huang Y, Zamanian-Daryoush M, Culley MK, DiDonato AJ, Fu X, Hazen JE, Krajcik
D, DiDonato JA, Lusis AJ, Hazen SL., Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis. Cell. 2015
;163(7):1585-95.
65 Kim Y, Keogh J, Clifton P., A review of potential metabolic etiologies of the observed association between red meat consumption and development of type
2 diabetes mellitus. Metabolism. 2015;64(7):768-79.
66 Gao, X.; Liu, X.; Xu, J.; Xue, C.; Xue, Y.; Wang, Y., Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. J.
Biosci. Bioeng. 2014;118: 476–481.
67 Shan Z, Sun T, Huang H, Chen S, Chen L, Luo C, Yang W, Yang X, Yao P, Cheng J, Hu FB, Liu L., Association between microbiota-dependent metabolite
trimethylamine-N-oxide and type 2 diabetes. Am J Clin Nutr. 2017;106(3):888-894.
68 Bell JD, Lee JA, Lee HA, Sadler PJ, Wilkie DR, Woodham RH. Nuclear magnetic resonance studies of blood plasma and urine from subjects with chronic
renal failure: identification of trimethylamine-N-oxide. Biochim Biophys Acta. 199;1096(2):101-7.
69 Marcus A. Bain, Randall Faull, Gianfranco Fornasini, Robert W. Milne, Allan M. Evans, Accumulation of trimethylamine and trimethylamine- N -oxide in endstage renal disease patients undergoing haemodialysis. Nephrology Dialysis Transplantation. 2006; 5 (5):1300–1304.
70 Missailidis C, Hällqvist J, Qureshi AR, Barany P, Heimbürger O, Lindholm B, Stenvinkel P, Bergman P., Serum Trimethylamine-N-Oxide Is Strongly Related
to Renal Function and Predicts Outcome in Chronic Kidney Disease. PLoS One. 2016;11(1):e0141738.
71 Kim RB, Morse BL, Djurdjev O, Tang M, Muirhead N, Barrett B, Holmes DT, Madore F, Clase CM, Rigatto C, Levin A; CanPREDDICT Investigators.
Advanced chronic kidney disease populations have elevated trimethylamine N-oxide levels associated with increased cardiovascular events. Kidney Int.
2016;89(5):1144-1152.
72 Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, Li XS, Levison BS, Hazen SL., Gut microbiota-dependent trimethylamine N-oxide
(TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116(3):448-55.
73 Pelletier CC, Croyal M, Ene L, Aguesse A, Billon-Crossouard S, Krempf M, Lemoine S, Guebre-Egziabher F, Juillard L, Soulage CO. Elevation of
Trimethylamine-N-Oxide in Chronic Kidney Disease: Contribution of Decreased Glomerular Filtration Rate. Toxins (Basel). 2019;11(11):635.
74 Shah NB, Allegretti AS, Nigwekar SU, Kalim S, Zhao S, Lelouvier B, Servant F, Serena G, Thadhani RI, Raj DS, Fasano A. Blood Microbiome Profile in
CKD : A Pilot Study. Clin J Am Soc Nephrol. 2019;14(5):692-701.
75 Kho ZY, Lal SK. The Human Gut Microbiome – A Potential Controller of Wellness and Disease. Front Microbiol. 2018;9:1835.
76 Tarawneh R, Penhos E. The gut microbiome and Alzheimer’s disease: Complex and bidirectional interactions. Neurosci Biobehav Rev. 2022;141:104814.
77 Silva MVF, Loures CMG, Alves LCV, de Souza LC, Borges KBG, Carvalho MDG. Alzheimer’s disease: risk factors and potentially protective measures. J
Biomed Sci. 2019;26(1):33.
78 Zhuang K, Huang C, Leng L, Zheng H, Gao Y, Chen G, Ji Z, Sun H, Hu Y, Wu D, Shi M, Li H, Zhao Y, Zhang Y, Xue M, Bu G, Huang TY, Xu H, Zhang
J. Neuron-Specific Menin Deletion Leads to Synaptic Dysfunction and Cognitive Impairment by Modulating p35 Expression. Cell Rep. 2018;24(3):701-712.
79 Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, Carlsson CM, Asthana S, Zetterberg H, Blennow K, Bendlin BB, Rey FE.
Gut microbiome alterations in Alzheimer’s disease. Sci Rep. 2017 ;7(1):13537.
80 Shen YE, Wang X, Fu S, Zhang X, Zhang YN, Wang RT. Concomitant memantine and Lactobacillus plantarum treatment attenuates cognitive impairments
in APP/PS1 mice. Aging (Albany NY). 2020;12(1):628-649.
81 Wang F, Gu Y, Xu C, Du K, Zhao C, Zhao Y, Liu X. Transplantation of fecal microbiota from APP/PS1 mice and Alzheimer’s disease patients enhanced
endoplasmic reticulum stress in the cerebral cortex of wild-type mice. Front Aging Neurosci. 2022;14:858130.
82 Buawangpong N, Pinyopornpanish K, Siri-Angkul N, Chattipakorn N, Chattipakorn SC. The role of trimethylamine-N-Oxide in the development of Alzheimer’s
disease. J Cell Physiol. 2022;237(3):1661-1685.
83 Faulin TDES, Estadella D. ALZHEIMER’S DISEASE AND ITS RELATIONSHIP WITH THE MICROBIOTA-GUT-BRAIN AXIS. Arq Gastroenterol.
2023;60(1):144-154.