Получена: 06/04/2023/ Принята: 13/10/2023 / Опубликована online: 30/10/2023
УДК 616.132.2-089-74
DOI 10.53511/PHARMKAZ.2023.86.56.005
1К.С.АЛИМБАЕВ, 1М.А.АРИПОВ, 2 Б.А.АЙНАБЕКОВА, 1А.Ю.ГОНЧАРОВ, 1А.А.МУСАЕВ
1 НАО «Национальный научный кардиохирургический центр», Астана, Казахстан
2НАО «Медицинский университет Астана», Астана, Казахстан
КЛИНИЧЕСКАЯ ЭФФЕКТИВНОСТЬ БИОДЕГРАДИРУЕМЫХ СТЕНТОВ
В ЛЕЧЕНИИ КОРОНАРНОЙ БОЛЕЗНИ СЕРДЦА (ОБЗОР ЛИТЕРАТУРЫ)
Резюме: согласно данным литературных источников на сегодняшний день повсеместно наблюдается высокая заболеваемость коронарной болезнью сердца. Учитывая приоритетное направление современной медицины в вопросах своевременной диагностики и эффективного лечения сердечно-сосудистых заболеваний несомненна актуальность изучения наиболее эффективных методах терапии в
данной категории пациентов. В последние десятилетия наблюдается значительное увеличение доли инновационных разработок в интервенционном лечении пациентов, что определяет значимость
сравнительного анализа клинической эффективности применения биодеградируемых стентов. Нами был проведен литературный поиск преимущественно зарубежных литературных источников по
существующим методам лечения пациентов с коронарной болезнью сердца, изучены технических
сравнительные характеристики стентов различных поколений, также были проанализированы результаты проведенных клинических исследований по данному направлению. Применение биодеградируемых стентов ввиду самой технологической характеристики в виде постепенного растворения
каркаса изделия открывает широкие перспективы в вопросах минимизации рисков, связанных с данным методом лечения. Представленные нами литературные данные позволят прояснить ситуацию
в вопросах определения тактики ведения пациентов с коронарной болезнью сердца, дифференцированного поиска наиболее оптимального объема и вида терапии, определении дальнейшего прогноза.
Ключевые слова: ишемическая болезнь сердца, биодеградируемые стенты, эндоваскулярное лечение
СПИСОК ЛИТЕРАТУРЫ
1 Olvera Lopez E, Ballard BD, Jan A. Cardiovascular Disease. 2021 Aug 11. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–
. PMID: 30571040.
2 Institute of Medicine (US) Committee on Social Security Cardiovascular Disability Criteria. Cardiovascular Disability: Updating the Social Security Listings.
Washington (DC): National Academies Press (US); 2010. PMID: 24983036.
3 Nowbar, A. N., Gitto, M., Howard, J. P., Francis, D. P., & Al-Lamee, R. (2019). Mortality From Ischemic Heart Disease. Circulation. Cardiovascular quality and
outcomes, 12(6), e005375. https://doi.org/10.1161/CIRCOUTCOMES.118.005375
4 Finegold, J. A., Asaria, P., & Francis, D. P. (2013). Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation
and United Nations. International journal of cardiology, 168(2), 934–945. https://doi.org/10.1016/j.ijcard.2012.10.046
5 Вебер В.Р., Майдыров Е.С., Карибаев К.Р., & Прошина Лидия Григорьевна (2020). Возрастные, гендерные и этнические особенности поражения
коронарных артерий у больных ИБС жителей Казахстана. Вестник Новгородского государственного университета им. Ярослава Мудрого, (1 (117)),
118-121.
6 Malakar, A. K., Choudhury, D., Halder, B., Paul, P., Uddin, A., & Chakraborty, S. (2019). A review on coronary artery disease, its risk factors, and therapeutics.
Journal of cellular physiology, 234(10), 16812–16823. https://doi.org/10.1002/jcp.28350
7 Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., Ferguson, T. B., Ford, E., Furie, K., et al. American Heart Association
Statistics Committee and Stroke Statistics Subcommittee (2010). Heart disease and stroke statistics—2010 update: a report from the American Heart Association.
Circulation, 121(7), e46–e215. https://doi.org/10.1161/CIRCULATIONAHA.109.192667
8 Chhabra L, Zain MA, Siddiqui WJ. Coronary Stents. 2022 Apr 30. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–. PMID:
29939581.
9 Barton M, Grüntzig J, Husmann M, Rösch J. Balloon Angioplasty — The Legacy of Andreas Grüntzig, M.D. (1939-1985). Front Cardiovasc Med. 2014 Dec
29;1:15. doi: 10.3389/fcvm.2014.00015. PMID: 26664865; PMCID: PMC4671350.
10 Tan C, Schatz RA. The History of Coronary Stenting. Interv Cardiol Clin. 2016 Jul;5(3):271-280. doi: 10.1016/j.iccl.2016.03.001. Epub 2016 Jun 21. PMID:
28582026.
11 McKavanagh P, Zawadowski G, Ahmed N, Kutryk M. The evolution of coronary stents. Expert Rev Cardiovasc Ther. 2018 Mar;16(3):219-228. doi:
10.1080/14779072.2018.1435274. Epub 2018 Feb 5. PMID: 29381087.
12 Santucci, A., Riccini, C., & Cavallini, C. (2020). Treatment of stable ischaemic heart disease: the old and the new. European heart journal supplements :
journal of the European Society of Cardiology, 22(Suppl E), E54–E59. https://doi.org/10.1093/eurheartj/suaa060
13 Rezapour, A., Tavakoli, N., Akbar, S., Hajahmadi, M., Ameri, H., Mohammadi, R., & Bagheri Faradonbeh, S. (2020). Medical therapy versus percutaneous
coronary intervention in ischemic heart disease: A cost-effectiveness analysis. Medical journal of the Islamic Republic of Iran, 34, 155. https://doi.org/10.47176/
mjiri.34.155
14 Htay T, Liu MW. Drug-eluting stent: a review and update. Vasc Health Risk Manag. 2005;1(4):263-76. doi: 10.2147/vhrm.2005.1.4.263. PMID: 17315599;
PMCID: PMC1993957.
15 Bangalore, S., Maron, D. J., Stone, G. W., & Hochman, J. S. (2020). Routine Revascularization Versus Initial Medical Therapy for Stable Ischemic Heart
Disease: A Systematic Review and Meta-Analysis of Randomized Trials. Circulation, 142(9), 841–857. https://doi.org/10.1161/CIRCULATIONAHA.120.048194
16 Ma, Min & He, Yong. (2016). Bioresorbable scaffolds: History and current knowledge. Cardiology Plus. 1. 20. 10.4103/2470-7511.248370.
17 Sotomi Y, Onuma Y, Collet C, Tenekecioglu E, Virmani R, Kleiman NS, Serruys PW. Bioresorbable Scaffold: The Emerging Reality and Future Directions.
Circ Res. 2017 Apr 14;120(8):1341-1352. doi: 10.1161/CIRCRESAHA.117.310275. PMID: 28408454.
18 Onuma Y, Serruys PW. Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization? Circulation. 2011 Feb
22;123(7):779-97. doi: 10.1161/CIRCULATIONAHA.110.971606. PMID: 21343594.
19 Toong DWY, Toh HW, Ng JCK, Wong PEH, Leo HL, Venkatraman S, Tan LP, Ang HY, Huang Y. Bioresorbable Polymeric Scaffold in Cardiovascular
Applications. Int J Mol Sci. 2020 May 13;21(10):3444. doi: 10.3390/ijms21103444. PMID: 32414114; PMCID: PMC7279389.
20 Patrick W. Serruys, Yuki Katagiri, Yohei Sotomi, Yaping Zeng, Bernard Chevalier, René J. van der Schaaf, Andreas Baumbach, Pieter Smits, Nicolas M.
van Mieghem, Antonio Bartorelli, Paul Barragan, Anthony Gershlick, Ran Kornowski, Carlos Macaya, John Ormiston, Jonathan Hill, Irene M. Lang, Mohaned
Egred, Jean Fajadet, Maciej Lesiak, Stephan Windecker, Robert A. Byrne, Lorenz Räber, Robert-Jan van Geuns, Gary S. Mintz, Yoshinobu Onuma, Arterial
Remodeling After Bioresorbable Scaffolds and Metallic Stents, Journal of the American College of Cardiology, Volume 70, Issue 1, 2017, Pages 60-74, ISSN
0735-1097, https://doi.org/10.1016/j.jacc.2017.05.028.
21 Sotomi Y, Onuma Y, Collet C, Tenekecioglu E, Virmani R, Kleiman NS, Serruys PW. Bioresorbable Scaffold: The Emerging Reality and Future Directions.
Circ Res. 2017 Apr 14;120(8):1341-1352. doi: 10.1161/CIRCRESAHA.117.310275. PMID: 28408454.
22 Jiulia Masiero, Giulio Rodinò, Juji Matsuda, Giuseppe Tarantini,Bioresorbable Coronary Scaffold Technologies: What’s New? Cardiology Clinics, Volume
38, Issue 4, 2020,Pages 589-599,ISSN 0733-8651,ISBN 9780323777094, doi.org/10.1016/j.ccl.2020.07.004.
23 Rapetto, C., & Leoncini, M. (2017). Magmaris: a new generation metallic sirolimus-eluting fully bioresorbable scaffold: present status and future perspectives.
Journal of thoracic disease, 9(Suppl 9), S903–S913. https://doi.org/10.21037/jtd.2017.06.34
24 Cook, S., Ladich, E., Nakazawa, G., Eshtehardi, P., Neidhart, M., Vogel, R., Togni, M., Wenaweser, P., Billinger, M., Seiler, C., Gay, S., Meier, B., Pichler, W.
J., Jüni, P., Virmani, R., & Windecker, S. (2009). Correlation of intravascular ultrasound findings with histopathological analysis of thrombus aspirates in patients
with very late drug-eluting stent thrombosis. Circulation, 120(5), 391–399. https://doi.org/10.1161/CIRCULATIONAHA.109.854398
25 Felix CM, van den Berg VJ, Hoeks SE, Fam JM, Lenzen M, Boersma E, Smits PC, Serruys PW, Onuma Y, van Geuns RJM. Mid-term outcomes of
the Absorb BVS versus second-generation DES: A systematic review and meta-analysis. PLoS One. 2018 May 9;13(5):e0197119. doi: 10.1371/journal.
pone.0197119. PMID: 29742143; PMCID: PMC5942828.
26 Kereiakes DJ, Ellis SG, Metzger C, Caputo RP, Rizik DG, Teirstein PS, Litt MR, Kini A, Kabour A, Marx SO, Popma JJ, McGreevy R, Zhang Z, Simonton C,
Stone GW; ABSORB III Investigators. 3-Year Clinical Outcomes With Everolimus-Eluting Bioresorbable Coronary Scaffolds: The ABSORB III Trial. J Am Coll
Cardiol. 2017 Dec 12;70(23):2852-2862. doi: 10.1016/j.jacc.2017.10.010. Epub 2017 Oct 31. PMID: 29100702.
27 Goncalves-Ramírez LR, Gutíerrez H, Julca F, Escañuela MGA, Varvaro G, Amat-Santos I. Coronary Vasoreactivity after Complete Bioresorption of Absorb
BVS at 5-Year Follow-Up. Arq Bras Cardiol. 2021 Feb;116(2 suppl 1):8-11. English, Portuguese. doi: 10.36660/abc.20190783. PMID: 33566995; PMCID:
PMC8118635.
28 İbişoğlu E, Çakal S, Çakal B, Güneş HM, Boyraz B, Boztosun B. Long-term results of long segment coronary artery lesions overlapped with novolimuseluting DESolve scaffold: Disappointment or futuristic? Anatol J Cardiol. 2021 Dec;25(12):912-919. doi: 10.5152/AnatolJCardiol.2021.25. PMID: 34866586;
PMCID: PMC8654006.
29 Mattesini A, Bartolini S, Sorini Dini C, Valente S, Parodi G, Stolcova M, Meucci F, Di Mario C. The DESolve novolimus bioresorbable Scaffold: from bench
to bedside. J Thorac Dis. 2017 Aug;9(Suppl 9):S950-S958. doi: 10.21037/jtd.2017.07.25. PMID: 28894601; PMCID: PMC5583086.
30 Cerrato E, Barbero U, Gil Romero JA, Quadri G, Mejia-Renteria H, Tomassini F, Ferrari F, Varbella F, Gonzalo N, Escaned J. Magmaris™ resorbable
magnesium scaffold: state-of-art review. Future Cardiol. 2019 Jul;15(4):267-279. doi: 10.2217/fca-2018-0081. Epub 2019 May 14. PMID: 31084216.
31 Rapetto C, Leoncini M. Magmaris: a new generation metallic sirolimus-eluting fully bioresorbable scaffold: present status and future perspectives. J Thorac
Dis. 2017 Aug;9(Suppl 9):S903-S913. doi: 10.21037/jtd.2017.06.34. PMID: 28894596; PMCID: PMC5583079.
32 Serruys PW, Chevalier B, Dudek D, Cequier A, Carrié D, Iniguez A, Dominici M, van der Schaaf RJ, Haude M, Wasungu L, Veldhof S, Peng L, Staehr P,
Grundeken MJ, Ishibashi Y, Garcia-Garcia HM, Onuma Y. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic
heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from
a randomised controlled trial. Lancet. 2015 Jan 3;385(9962):43-54. doi: 10.1016/S0140-6736(14)61455-0. Epub 2014 Sep 14. PMID: 25230593.
33 Zheng Y. Magnesium alloys as degradable biomaterials. Boca Raton: CRC Press, Taylor & Francis Group; 2015.
34 Onuma Y, Serruys PWJC. Bioresorbable scaffolds: from basic concept to clinical applications. Boca Raton: CRC Press, Taylor & Francis Group; 2017.
35 Javaid Iqbal, Yoshinobu Onuma, John Ormiston, Alexandre Abizaid, Ron Waksman, Patrick Serruys, Bioresorbable scaffolds: rationale, current status,
challenges, and future, European Heart Journal, Volume 35, Issue 12, 21 March 2014, Pages 765–776, https://doi.org/10.1093/eurheartj/eht542
36 Tesfamariam B. Bioresorbable Scaffold-Based Controlled Drug Delivery for Restenosis. J Cardiovasc Transl Res. 2019 Jun;12(3):193-203. doi: 10.1007/
s12265-018-9841-x. Epub 2018 Oct 26. PMID: 30367355.
37 Guangling Song, Control of biodegradation of biocompatable magnesium alloys,Corrosion Science, Volume 49, Issue 4, 2007, Pages 1696-1701.
38 Chawla, S.L.; Gupta, R.K. Materials Selection for Corrosion Control; ASM International: Materials Park, OH, USA, 1993
39 Smith, L. F., Heagerty, A. M., Bing, R. F., & Barnett, D. B. (1986). Intravenous infusion of magnesium sulphate after acute myocardial infarction: effects on
arrhythmias and mortality. International journal of cardiology, 12(2), 175–183. https://doi.org/10.1016/0167-5273(86)90239-1
40 Kemp, P. A., Gardiner, S. M., March, J. E., Rubin, P. C., & Bennett, T. (1999). Assessment of the effects of endothelin-1 and magnesium sulphate on regional
blood flows in conscious rats, by the coloured microsphere reference technique. British journal of pharmacology, 126(3), 621–626. https://doi.org/10.1038/
sj.bjp.0702342
41 Berthon, N., Laurant, P., Fellmann, D., & Berthelot, A. (2003). Effect of magnesium on mRNA expression and production of endothelin-1 in DOCA-salt
hypertensive rats. Journal of cardiovascular pharmacology, 42(1), 24–31. https://doi.org/10.1097/00005344-200307000-00004
42 Cassese S, Byrne RA, Ndrepepa G, Kufner S, Wiebe J, Repp J, Schunkert H, Fusaro M, Kimura T, Kastrati A. Everolimus-eluting bioresorbable vascular
scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. Lancet. 2016 Feb 6;387(10018):537-544. doi: 10.1016/
S0140-6736(15)00979-4. Epub 2015 Nov 17. PMID: 26597771.
43 Serruys PW, Chevalier B, Dudek D, Cequier A, Carrié D, Iniguez A, Dominici M, van der Schaaf RJ, Haude M, Wasungu L, Veldhof S, Peng L, Staehr P,
Grundeken MJ, Ishibashi Y, Garcia-Garcia HM, Onuma Y. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic
heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from
a randomised controlled trial. Lancet. 2015 Jan 3;385(9962):43-54. doi: 10.1016/S0140-6736(14)61455-0. Epub 2014 Sep 14. PMID: 25230593.
44 Sabaté M, Windecker S, Iñiguez A, Okkels-Jensen L, Cequier A, Brugaletta S, Hofma SH, Räber L, Christiansen EH, Suttorp M, Pilgrim T, Anne van Es G,
Sotomi Y, García-García HM, Onuma Y, Serruys PW. Everolimus-eluting bioresorbable stent vs. durable polymer everolimus-eluting metallic stent in patients
with ST-segment elevation myocardial infarction: results of the randomized ABSORB ST-segment elevation myocardial infarction-TROFI II trial. Eur Heart J.
2016 Jan 14;37(3):229-40. doi: 10.1093/eurheartj/ehv500. Epub 2015 Sep 23. PMID: 26405232; PMCID: PMC4712350.
45 Puricel S, Arroyo D, Corpataux N, Baeriswyl G, Lehmann S, Kallinikou Z, Muller O, Allard L, Stauffer JC, Togni M, Goy JJ, Cook S. Comparison of
everolimus- and biolimus-eluting coronary stents with everolimus-eluting bioresorbable vascular scaffolds. J Am Coll Cardiol. 2015 Mar 3;65(8):791-801. doi:
10.1016/j.jacc.2014.12.017. PMID: 25720622.
46 Kimura T, Kozuma K, Tanabe K, Nakamura S, Yamane M, Muramatsu T, Saito S, Yajima J, Hagiwara N, Mitsudo K, Popma JJ, Serruys PW, Onuma Y, Ying
S, Cao S, Staehr P, Cheong WF, Kusano H, Stone GW; ABSORB Japan Investigators. A randomized trial evaluating everolimus-eluting Absorb bioresorbable
scaffolds vs. everolimus-eluting metallic stents in patients with coronary artery disease: ABSORB Japan. Eur Heart J. 2015 Dec 14;36(47):3332-42. doi:
10.1093/eurheartj/ehv435. Epub 2015 Sep 1. PMID: 26330419.
47 Gao R, Yang Y, Han Y, Huo Y, Chen J, Yu B, Su X, Li L, Kuo HC, Ying SW, Cheong WF, Zhang Y, Su X, Xu B, Popma JJ, Stone GW; ABSORB China
Investigators. Bioresorbable Vascular Scaffolds Versus Metallic Stents in Patients With Coronary Artery Disease: ABSORB China Trial. J Am Coll Cardiol. 2015
Dec 1;66(21):2298-2309. doi: 10.1016/j.jacc.2015.09.054. Epub 2015 Oct 12. PMID: 26471805.
48 Ellis SG, Kereiakes DJ, Metzger DC, Caputo RP, Rizik DG, Teirstein PS, Litt MR, Kini A, Kabour A, Marx SO, Popma JJ, McGreevy R, Zhang Z, Simonton
C, Stone GW; ABSORB III Investigators. Everolimus-Eluting Bioresorbable Scaffolds for Coronary Artery Disease. N Engl J Med. 2015 Nov 12;373(20):1905-
15. doi: 10.1056/NEJMoa1509038. Epub 2015 Oct 12. PMID: 26457558.
49 Verheye, S., Wlodarczak, A., Montorsi, P., Torzewski, J., Bennett, J., Haude, M., Starmer, G., Buck, T., Wiemer, M., Nuruddin, A., Yan, B. P., & Lee, M. K.
(2021). BIOSOLVE-IV-registry: Safety and performance of the Magmaris scaffold: 12-month outcomes of the first cohort of 1,075 patients. Catheterization and
cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions, 98(1), E1–E8. https://doi.org/10.1002/ccd.29260
50 Abellas-Sequeiros, R. A., Ocaranza-Sanchez, R., Bayon-Lorenzo, J., Santas-Alvarez, M., & Gonzalez-Juanatey, C. (2020). 12-month clinical outcomes
after Magmaris percutaneous coronary intervention in a real-world cohort of patients: Results from the CardioHULA registry. Revista portuguesa de cardiologia,
39(8), 421–425. https://doi.org/10.1016/j.repc.2019.09.018
51 Boeder, N. F., Dörr, O., Koepp, T., Blachutzik, F., Achenbach, S., Elsässer, A., Hamm, C. W., & Nef, H. M. (2021). Acute Mechanical Performance of Magmaris
vs. DESolve Bioresorbable Scaffolds in a Real-World Scenario. Frontiers in cardiovascular medicine, 8, 696287. https://doi.org/10.3389/fcvm.2021.696287
52 Hideo-Kajita A, Garcia-Garcia HM, Kolm P, Azizi V, Ozaki Y, Dan K, Ince H, Kische S, Abizaid A, Töelg R, Lemos PA, Van Mieghem NM, Verheye S, von
Birgelen C, Christiansen EH, Wijns W, Lefèvre T, Windecker S, Waksman R, Haude M; BIOFLOW-II, BIOSOLVE-II and BIOSOLVE-III investigators. Comparison
of clinical outcomes between Magmaris and Orsiro drug eluting stent at 12 months: Pooled patient level analysis from BIOSOLVE II-III and BIOFLOW II trials.
Int J Cardiol. 2020 Feb 1;300:60-65. doi: 10.1016/j.ijcard.2019.11.003. Epub 2019 Nov 6. PMID: 31718825.
53 Hideo-Kajita, A., Garcia-Garcia, H. M., Haude, M., Joner, M., Koolen, J., Ince, H., Abizaid, A., Toelg, R., Lemos, P. A., von Birgelen, C., Christiansen, E. H.,
Wijns, W., Neumann, F. J., Kaiser, C., Eeckhout, E., Teik, L. S., Escaned, J., Azizi, V., Kuku, K. O., Ozaki, Y., … Waksman, R. (2019). First Report of Edge
Vascular Response at 12 Months of Magmaris, A Second-Generation Drug-Eluting Resorbable Magnesium Scaffold, Assessed by Grayscale Intravascular
Ultrasound, Virtual Histology, and Optical Coherence Tomography. A Biosolve-II Trial Sub-Study. Cardiovascular revascularization medicine : including molecular
interventions, 20(5), 392–398. https://doi.org/10.1016/j.carrev.2019.02.019
54 Rola P, Włodarczak A, Barycki M, Szudrowicz M, Łanocha M, Kulczycki JJ, Turkiewicz K, Woźnica K, Lesiak M, Doroszko A. Biodegradable Polymer DES
(Ultimaster) vs. Magnesium Bioresorbable Scaffold (BRS Magmaris) in Diabetic Population with NSTE-ACS: A One-Year Clinical Outcome of Two SirolimusEluting Stents. J Diabetes Res. 2021 Nov 23;2021:8636050. doi: 10.1155/2021/8636050. PMID: 34859105; PMCID: PMC8632392.