ELUCIDATING THE MECHANISMS OF NEUTROPHIL EXTRACELLULAR TRAPS IN ACUTE RESPIRATORY DISTRESS SYNDROME PATHOGENESIS

Received: 20.11.2023 Accepted: 31.01.2024 Published online:29.02.2024
УДК: 616-002.2
DOI 10.53511/PHARMKAZ.2024.80.94.048

D.R. Tazhikov 1, V.B. Molotov- Luchancky 2, А. Malm 3
1 NPJSK “Medical University of Karaganda”, Karaganda, Kazakhstan
2 NPJSK “Medical University of Karaganda”, Karaganda, Kazakhstan
3″Medical University of Lublin”, Lublin, Poland

ELUCIDATING THE MECHANISMS OF NEUTROPHIL EXTRACELLULAR TRAPS
IN ACUTE RESPIRATORY DISTRESS SYNDROME PATHOGENESIS

Resume: This article critically examines the scientific literature related to the formation of neutrophil extracellular
traps and their impact on the pathogenesis and clinical course of acute respiratory distress syndrome (ARDS).
The available evidence indicates that the formation and accumulation of neutrophil extracellular traps in the
lung tissue are implicated in the development and progression of ARDS. Moreover, recent studies have shed
light on the potential mechanisms by which neutrophil extracellular traps contribute to impaired ventilationperfusion relationships in ARDS.
The findings presented in this review suggest that further research into the phenomenon of neutrophil
extracellular traps may lead to new insights into the pathophysiology of ARDS and inform the development
of novel therapeutic strategies. Specifically, targeting neutrophil extracellular traps may offer a promising
approach to attenuate the severity of ARDS and improve clinical outcomes. However, the complexity of the
underlying mechanisms and the heterogeneity of ARDS patients necessitate further investigation to identify
optimal therapeutic targets and treatment strategies.
Keywords: Neutrophil extracellular traps, oxidative stress, ARDS, acute lung injury.

BIBLIOGRAPHY
1 Laforge M, Elbim C, Frère C, Hémadi M, Massaad C, Nuss P, Benoliel JJ, Becker C. Tissue damage from neutrophil-induced
oxidative stress in COVID-19. Nat Rev Immunol. 2020 Sep;20(9):515-516. doi: 10.1038/s41577-020-0407-1.
2 Narasaraju Teluguakula, Tang Benjamin M., Herrmann Martin, Muller Sylviane, Chow Vincent T. K., Radic Marko Neutrophilia
and NETopathy as Key Pathologic Drivers of Progressive Lung Impairment in Patients With COVID-19 JOURNAL=Frontiers in
Pharmacology VOLUME=11 YEAR=2020
3 Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weirauch Y., Zychlinsky A. Neutrophil extracellular
traps kill bacteria. Science. 2004;303:1532–1535. doi: 10.1126/science.1092385.
4 Sabbatini M, Magnelli V, Renò F. NETosis in Wound Healing: When Enough Is Enough. Cells. 2021 Feb 25;10(3):494. doi:
10.3390/cells10030494. PMID: 33668924;
5 Erpenbeck L., Schön M.P. Neutrophil extracellular traps: Protagonists of cancer progression? Oncogene. 2017;36:2483–2490.
doi: 10.1038/onc.2016.406.

6 Chrysanthopoulou A., Mitroulis I., Apostolidou E., Arelaki S., Mikrogulis D., Kostantinidis T., Sivridis E., Koffa M., Giatromanolaki
A., Boumpas D., et al. Neutrophil extracellular traps promote differentiation and function of fibroblasts. J. Pathol. 2014;233:294–
307. doi: 10.1002/path.4359.
7 Shun-Chin Yang, Yung-Fong Tsai, Yen-Lin Pan, Tsong-Long Hwang, Understanding the role of neutrophils in acute respiratory
distress syndrome, Biomedical Journal, Volume 44, Issue 4, 2021,Pages 439-446/
8 N. Roubinian TACO and TRALI: biology, risk factors, and prevention strategies Hematology Am Soc Hematol Educ Program,
2018 (2018), pp. 585-594
9 Jiménez-Alcázar M, et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science. 2017;358(6367):1202–
1206. doi: 10.1126/science.aam8897.
10 Lefrançais E, Mallavia B, Zhuo H, Calfee CS, Looney MR. Maladaptive role of neutrophil extracellular traps in pathogen-induced
lung injury. JCI Insight. 2018 Feb 8;3(3):e98178. doi: 10.1172/jci.insight.98178.
11 Bellani G, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive
care units in 50 countries. JAMA. 2016;315(8):788–800. doi: 10.1001/jama.2016.0291.
12 Clinically relevant model of pneumococcal pneumonia, ARDS, and nonpulmonary organ dysfunction in mice Am J Physiol Lung
Cell Mol Physiol, 317 (2019), pp. L717-L736
13 O.J. McElvaney, N. McEvoy, O.F. McElvaney, T.P. Carroll, M.P. Murphy, D.M. Dunlea, et al. Characterization of the inflammatory
response to severe COVID-19 illness Am J Respir Crit Care Med, 202 (2020), pp. 812-821
14 S. Hoegl, N. Burns, M. Angulo, D. Francis, C.M. Osborne, T.W. Mills, et al. Capturing the multifactorial nature of ARDS – “Twohit” approach to model murine acute lung injury Phys Rep, 6 (2018), Article e13648
15 Inès Bendib, Luc de Chaisemartin, Vanessa Granger, Frédéric Schlemmer, Bernard Maitre, Sophie Hüe, Mathieu Surenaud, Asma
Beldi-Ferchiou, Guillaume Carteaux, Keyvan Razazi, Sylvie Chollet-Martin, Armand Mekontso Dessap, Nicolas de Prost; Neutrophil
Extracellular Traps Are Elevated in Patients with Pneumonia-related Acute Respiratory Distress Syndrome. Anesthesiology 2019;
130:581–591
16 Fan E, Brodie D, Slutsky AS. Acute Respiratory Distress Syndrome: Advances in Diagnosis and Treatment. JAMA. 2018 Feb
20;319(7):698-710.
17 Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL, Lefrant JY, Prat G, Richecoeur J, Nieszkowska A, Gervais C,
Baudot J, Bouadma L, Brochard L; Expiratory Pressure (Express) Study Group. Positive end-expiratory pressure setting in adults
with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008 Feb 13;299(6):646-55.
doi: 10.1001/jama.299.6.646. PMID: 18270353.
18 Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, Ranieri M,
Rubenfeld G, Thompson BT, Wrigge H, Slutsky AS, Pesenti A, Epidemiology, Patterns of Care, and Mortality for Patients With Acute
Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. LUNG SAFE Investigators, ESICM Trials Group
JAMA. 2016 Feb;315(8):788-800.
19 Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson, et al. ARDS Definition Task Force, Acute respiratory distress syndrome:
the Berlin Definition. JAMA. 2012 Jun
20 Yıldırım F, Karaman İ, Kaya A. COVID-19 and thrombosis: COVID-19 related acute Current situation in ARDS in the light of recent
studies: Classification, epidemiology and pharmacotherapeutics // Tuberk Toraks 2021;69(4):535-546.
21 Goodman RB, Strieter RM, Martin DP, Steinberg KP, Milberg JA, Maunder RJ, et al. Inflammatory cytokines in patients with
persistence of the acute respiratory distress syndrome. Am J Respir Crit Care Med. 1996;154:602–611.
22 Keustermans GC, Hoeks SB, Meerding JM, Prakken BJ, de Jager W. Cytokine assays: an assessment of the preparation and
treatment of blood and tissue samples. Methods. 2013;61:10–17
23 Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB et al. Diabetes primes neutrophils to undergo NETosis, which
impairs wound healing. Nat Med 2015; 21: 815–819.
24 Sur Chowdhury C, Giaglis S, Walker UA, Buser A, Hahn S, Hasler P . Enhanced neutrophil extracellular trap generation in
rheumatoid arthritis: analysis of underlying signal transduction pathways and potential diagnostic utility. Arthritis Res Ther 2014;
16: R122.
25 Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z et al. Netting neutrophils are major inducers of type I IFN
production in pediatric systemic lupus erythematosus. Sci Transl Med 2011; 3: 73ra20.
26 Li H., Pan P., Su X., Liu S., Zhang L., Wu D., et al. (2017). Neutrophil extracellular traps are pathogenic in ventilator-induced
lung injury and partially dependent on TLR4. BioMed. Res. Int. 2017, 8272504. 10.1155/2017/8272504

количество просмотров / 👁 656

Leave a Reply

Your email address will not be published. Required fields are marked *